Основные свойства латуни. Физические свойства латуни, ее плотность и применение
sempai24.ru

Основные свойства латуни. Физические свойства латуни, ее плотность и применение

При соединении меди и цинка получается латунь. Впервые подобный сплав появился в 1781 году. На тот момент уровень технологического оснащения был относительно невысокий, но Джеймс Эмерсон смог провести соединение меди и цинка, в результате чего получился сплав с уникальными качествами. Латунь – сплав, который сегодня получил широкое применение при производстве самого различного оборудования и строительных материалов. Он обладает достаточно большим количество особенностей, о которых далее поговорим подробнее.

Применение

Рассматривая применение латуни нужно уделить внимание ее составу. В него могут включаться различные легирующие элементы, которые способны существенно изменить эксплуатационные качества. Область применения латуни весьма обширна. Поэтому рассмотрим каждый тип сплава подробнее.

Рассматриваемый сплав делиться на простую и специальные латуни. Оба варианта могут применяться для:

  1. Производства деталей часов.
  2. Получения деталей различных приборов и машин, высокоточной аппаратуры.
  3. При наладке производства методом штамповки.
  4. Получения деталей для автомобилей: болты, гайки, втулки.
  5. При производстве труб для морских судов, самолетов и иного транспорта.

Эксплуатационные качества сплава определяют то, что при его использовании может оказываться самое различное воздействие: высокие температуры, влажность и химически агрессивные сферы, трение и другое. Именно поэтому изделия из латуни применяются при тяжелых эксплуатационных условиях, когда использование других металлов невозможно. При применении прутков из латуни могут изготавливаться детали электромашин.

Однако широкое распространение латунь не получила по причине достаточно высокой стоимости, так как его основой являются цинк и медь. Для улучшения эксплуатационных качеств также могут применяться другие легирующие вещества, имеющие высокую стоимость.

Классификация

Не сложно догадаться, что классификация сплава латуни проводится исходя из его химического состава. Наиболее распространена разновидность деформируемой латуни, которая представлена сочетанием 88-97% меди и не более 10% цинка. Подобный состав называют томпаком. Он пользуется большой популярностью, так как обладает весьма привлекательными эксплуатационными качествами. Ювелирная латунь идеально подходит для производства украшений. Красная латунь получила свое название по причине необычного оттенка, который достигается путем снижения концентрации цинка в составе. Из-за оттенка ее чаще всего применяют для изготовления статуэток или других художественных изделий.

Большое распространение получила и латунь литейная. Ее состав представлен 50-81% меди, а также достаточно большим количеством других примесей.

Различные виды литейной латуни могут применяться для изготовления:

  1. Коррозионностойких деталей, которые сегодня получили широкое распространение в области машиностроений и судостроения.
  2. Деталей, применяемых при изготовлении различных аппаратов.
  3. Сложной по своей конфигурации запорной арматуры или различных приборов, которые применяются при температуре не выше 250 градусов Цельсия. Высокая пластичность латуни позволяет ее использовать при создании запорной арматуры, установка которой будет проводиться при гидровоздушных ударных нагрузках.
  4. Подшипников и втулок самого различного применения.

Высокое качество сплава позволяет его применять для получения высокоточных изделий. Классификация автоматной латуни предусматривает следующие особенности состава:

  1. Содержание 57-75% меди.
  2. Концентрация 24-42% цинка.
  3. Легирование сплава 0,3-0,8% свинцом.

Присутствие свинца определяет то, что во время обработки подобного прудка образуется стружка. Именно поэтому автоматная латунь может обрабатываться высокопроизводительным оборудованием. Очень часто ее используют для получения декоративных элементов или метизов. Очень часто подобный сплав представлен в виде прудка или листового металла. Пруток может применятся на токарном станке, листовой металл при штамповке или фрезеровании.

Альфа латунь представлена сплавом с необычной кристаллической решеткой (содержания цинка не более 35%), за счет которой обеспечивается высокая пластичность. Именно поэтому он применяется зачастую для обработки методом штамповки.

Физические свойства

Во много физические свойства зависят от химического состава конкретной разновидности сплава. Поэтому свойства латуни могут существенно отличаться.

Как ранее было отмечено, большое распространение получил томпак, который может применяться для производства различных деталей и даже ювелирных украшений.

Цвет латуни подобного типа может быть желтым или красным в зависимости от концентрации цинка. К основным свойствам подобной латуни можно отнести нижеприведенные моменты:

  1. Высокая степень пластичности. Пластичность деформируемой латуни позволяет ее применять в качестве заготовки в различных производственных процессах: она подходит для обработки как методом штамповки, так и точения.
  2. Высокая коррозионная устойчивость определяет то, что даже при длительной эксплуатации при повышенной влажности на поверхности не появляется ржавчина.
  3. Хорошие антифрикционные свойства.
  4. Свариваемость со сталью и другими материалами позволяет применять сплав для получения комбинированных материалов.
  5. Есть возможность проводить покрытие поверхности томпака различными составами для придания особых эксплуатационных качеств. Примером можно назвать то, что довольно часто томпак покрывают эмалью или лаком для его декорирования.
  6. Изначально сплав имеет красивый золотистый цвет. По этой причине его довольно часто применяют при производстве художественных изделий.

Механические свойства деформируемой латуни могут существенно изменяться по причине добавления различных легирующих элементов.

В машиностроении и другой области производства большое распространение получила литейная разновидность латуни. Ее плотность относительно невелика (около 8300 кг/м 3), однако другие физические свойства определили большое распространение литейной латуни:

  1. Устойчивость к коррозионному воздействию.
  2. Высокие механические характеристики.
  3. Неплохая ковкость.
  4. Высокий показатель текучести при нагреве сплава, что позволяет получать изделия сложной конфигурации.
  5. Повышенная устойчивость к распаду состава из-за оказания воздействия со стороны окружающей среды.
  6. Плавление состава проходит при температуре около 950 градусов Цельсия.

Прочность латуни ниже, чем у стали, что связано особенностями строения кристаллической решетки и составом. Влияние на свойства латуней концентрации цинка очень велико. Поэтому для придания особых свойств концентрация основных элементов может существенно изменяться.

Химический состав и особенности внутренней структуры

Основными составными элементами считаются цинк и медь, концентрация которых будет самой большой. Состав латуни также может включать и другие примеси, которые придают сплаву особые физические свойства. Основной компонент латуни характеризуется высокой пластичностью и хорошей обрабатываемостью. Поэтому эти свойства передаются и рассматриваемому металлу.

Химический состав латуни регулируется на момент производства, как и тип структуры. Различают две разновидности структуры:

  1. Альфа фаза – раствор, который обладает повышенной стабильностью. Рассматривая кристаллическую решетку следует отметить, что она имеет гранецентрированную кубическую форму. Встречается подобная структура крайне часто.
  2. Альфа + бета фаза – еще один стабильный раствор, который можно охарактеризовать соотношением меди к цинку 3 к 2. За счет этого получается элементарная ячейка.

Стоит учитывать, что твердость второго сплава намного выше, чем первого. Однако за счет существенного повышения показателя твердости существенно падает пластичность. Максимальное содержание цинка в латуни составляет 50%. При соблюдении технологии производства подобная концентрация цинка позволяет достигнуть высоких показателей прочности и пластичности.

При производстве этого материала учитывается то, как температура нагрева влияет на проходящие структурные преобразования:

  1. Если сплав нагревается до высоких температур, то атомы β-фазы начинают располагаться без определенного порядка. В подобном состоянии состав обладает повышенной пластичностью.
  2. Если нагрев проводится до температуры 460 градусов Цельсия, то в составе формируется фаза, которая получила название β’. Особенностью этой фазы можно назвать повышенную твердость и хрупкость. Эти качества связаны с тем, что атомы расположены в строгом порядке.

Сложные латуни могут иметь в своем составе железо, марганец, свинец и другие компоненты, которые предназначены для изменения физических качеств. К примеру, свинец упрощает механическую обработку сплава.

Включение в состав свинца и висмута становится причиной снижения способности деформации сплава в горячем состоянии. Однако свинец в небольшой концентрации позволяет получить сыпучую стружку, за счет чего упрощается ее удаление с зоны резания при токарной или фрезерной обработке.

Порядок маркировки

Для маркировки рассматриваемого сплава были приняты определенные правила обозначения концентрации основных веществ. Все марки латуни начинаются с обозначения «Л», после которой могут идти буквы химических веществ, входящих в состав.

Деформируемый сплав латуни или иная его разновидность после первой буквы имеет число, характеризующее процент меди. Кроме этого маркировка может указывать на концентрацию легирующих элементов, для чего знак «Л» идет с другими буквенными обозначениями.

Для указания концентрации легирующих элементов после основной цифры ставится прочерк, затем указывается процентное содержание следующих элементов. Для разделения цифровых обозначений также применяется прочерк. Концентрация второго основного элемента (цинка) высчитывается, для чего от 100% значения отнимаются другие показатели концентрации меди и легирующих элементов. Примером того, как латунь обозначается согласно установленным стандартам назовем маркировку ЛАЖ70-1-2. Ее нужно читать следующим образом:

  1. В состав сплава входит 70% меди.
  2. Легирующими элементами выступает алюминий и железо, концентрация которых составляет 1% и 2% соответственно.
  3. Концентрация цинка: 100 – 70 – 1 – 2 = 27%.

В некоторых случаях концентрация цинка указывается соответствующей буквой, а количество меди высчитывается. Подобный метол маркировки чаще применяется для обозначения литейных латуней.

Нередко для повышения свойств металлов, а также для улучшения внешнего вида металлурги делают сплав из нескольких материалов. Полученный металл таким образом приобретает свойства и достоинства своих составляющих, что нередко делает такой сплав более востребованным, нежели использование металлов по отдельности. Латунь является примером такого сплава. Помимо прочего, он известен человечеству с древнейших времён.

Основные характеристики сплава

Официальное появление латуни как соединения меди и цинка стало возможным после открытия последнего в XVI веке. Сплавление металлического цинка с медью было впервые осуществлено в Великобритании Джеймсом Эмерсоном в 1781 году. Тем не менее в древности был довольно распространён сплав цинковой руды и меди, что явилось прообразом современного сплава. Современная латунь - это сплав меди с цинком в пропорции 70% на 30%.

В Древнем Риме была известна «златомедь», которую использовали для изготовления монет. После открытия Эмерсоном латунь стала объектом интереса для фальшивомонетчиков - материал имеет сходный с золотом цвет и некоторые свойства, что позволяло использовать его для разного рода подделок драгоценного металла.

Физические и химические свойства

Менее известны (но не менее привлекательны) сплавы с оловом и цинком, а также с оловом и золотом; их называют французским и абиссинским золотом. Также встречается северное золото, с добавлением в сплав алюминия.

Добавление значительной доли никеля к меди (от 6% до 30%) делает материал похожим на серебро; этот сплав получил наименование мельхиорового. Если же к никелю прибавить пару процентов марганца, то получится константан - сплав, который не особо подходит для декорирования, однако давно используется в качестве материала для высокоточных измерительных приборов.

Наконец, сочетание в равных пропорциях никеля и цинка даёт на выходе сплав нейзильбер, который также похож на серебро, но дешевле. Стоит упомянуть и материал, в котором доля никеля является большей, чем доля меди (никеля - до 66%, меди - до 34%). Речь идёт о монель-металле, который может применяться как в различных строительных отраслях, так и для производства музыкальных инструментов.

Латунь, которая хорошо известна и активно применяется уже на протяжении многих лет, является . Изобретателем этого материала с целым рядом уникальных характеристик считается англичанин Джеймс Эмерсон, который и запатентовал его в 1781 году.

Элементы состава

Основу латуни составляют медь и цинк. В наиболее традиционном составе такого сплава медь содержится в количестве 70%, а цинк – 30%. Существуют марки технической латуни, в составе которой цинк содержится в количестве 48–50 процентов. Что характерно, больше 50% цинка, используемого для производства латунных сплавов, получают из отходов данного металла.

В зависимости от особенностей внутренней структуры различают латуни альфа- и альфа-бета-типа, которые также называют одно- и двухфазными.

Их основные отличия заключаются в следующем.

  • В химическом составе латунных сплавов, относящихся к альфа-типу, содержится 35% цинка.
  • Альфа-бета-латуни (двухфазные) на 47–50% состоят из цинка. В их составе также содержится свинец, количество которого не превышает 6%.

Несмотря на то, что латунь, также созданная на основе меди, внешне очень похожа на некоторые , по профессиональной классификации она не относится к . В составе некоторых видов латуни содержится олово – основной легирующий элемент бронзы, но его добавляют в очень незначительных количествах, чтобы добиться улучшения отдельных характеристик сплава. Кроме олова, в химическом составе отдельных марок латуни могут содержаться такие элементы, как свинец, марганец, железо, никель и др., которые также позволяют улучшить ее свойства.

Отличаются красивым золотисто-желтым цветом, хорошо поддаются полировке и другим видам механической обработки. В зависимости от марки сплава, из которого изготовлено изделие, последнее можно подвергать ковке в холодном или нагретом состоянии, но некоторые виды данного металла методами пластической деформации обрабатывать нельзя. Несмотря на то, что для латуни характерна высокая коррозионная устойчивость, поверхность изделий из данного металла при их длительном взаимодействии с окружающим воздухом покрывается окисной пленкой и темнеет. Чтобы избежать изменения цвета поверхности латунных изделий с течением времени, их часто покрывают защитным слоем бесцветного лака.

Химический состав и особенности внутренней структуры

Чтобы хорошо разбираться в характеристиках латуни, важно понимать, какими свойствами обладают химические элементы, из которых она состоит. Такими элементами, как уже говорилось выше, являются медь и цинк.

Медь – это один из первых металлов, которые человек начал использовать для изготовления изделий различного назначения. Данный элемент, входящий в 11-ю группу IV периода таблицы Менделеева, имеет атомный номер 29 и обозначается как Cu (сокращение от Cuprum). Медь, которая является переходным металлом, отличается высокой пластичностью и красивым светло-золотистым цветом. При образовании оксидной пленки металл приобретает не менее красивый желтовато-красный оттенок.

Цинк – второй основной элемент в химическом составе латуни – также является металлом, который, в отличие от меди, не встречается в природе в чистом виде. Цинк, имеющий атомный номер 30, входит в побочную подгруппу 2-й группы IV периода таблицы Менделеева. Данный металл, производить который начали еще в XII веке в Индии, отличается высокой хрупкостью в нормальных условиях. Без оксидной пленки, которая появляется на металле при его взаимодействии с открытым воздухом, его поверхность имеет светло-голубой цвет. Обозначается данный металл символом Zn (сокращение от Zincum).

Структура латуни в зависимости от содержания в его составе основных компонентов может состоять из одной α- или одновременно α+β-фаз. Такие состояния, которые может принимать внутренняя структура сплава, отличаются следующими особенностями:

  • α-фаза – это раствор меди и цинка, характеризующийся высокой стабильностью, в котором молекулы основного металла (меди) имеют гранецентрированную кубическую решетку;
  • α+β-фаза – также стабильный раствор, в котором медь и цинк содержатся в соотношении 3:2 (в таком растворе молекулы меди имеют простую элементарную ячейку).

В зависимости от температуры нагрева в латуни происходят следующие структурные преобразования.

  • При нагревании латуни до высоких температур атомы в ее β-фазе, имеющей широкую область гомогенности, отличаются неупорядоченным расположением. В таком состоянии нагрева β-фаза латунного сплава отличается высокой пластичностью.
  • При незначительном нагреве латунного сплава (454–468° ) в нем формируется фаза, имеющая обозначение β’. Особенностью такой структурной фазы, которая отличается высокой твердостью и, соответственно, хрупкостью, является то, что атомы меди и цинка в ней располагаются упорядоченно.
Исходя из всего вышесказанного, можно сделать вывод о том, что латунные сплавы, внутреннюю структуру которых составляет только α-фаза (однофазные), отличаются хорошей пластичностью, а те, в которых присутствует и β-фаза (двухфазные), являются более прочными, но не предназначены для обработки методами пластической деформации.

Пластичность латуней с двухфазной структурой можно повысить, если нагреть их выше температуры, при которой происходит β’-превращение (700° ). В таком состоянии в структуре сплава преобладает только одна β-фаза, соответственно, он отличается высокой пластичностью. Однако даже однофазные латуни с хорошей пластичностью могут практически не обрабатываться методами пластической деформации. Это происходит в температурном интервале их нагрева до 300–700° , который получил название зоны хрупкости.

На то, какими механическими свойствами обладает латунь той или иной марки, значительное влияние оказывает содержание цинка в ее химическом составе. Так, если содержание данного химического элемента составляет до 30%, то одновременно повышаются как прочность, так и пластичность сплава. Дальнейшее повышение содержания цинка приводит к тому, что латунь становится менее пластичной (усложнение α-фазы), а затем и более хрупкой (формирование в структуре латуни β’-фазы). Прочность латуни увеличивается до того момента, пока цинка в ее составе не будет 45%, с дальнейшим увеличением количества данного элемента латунь становится и менее прочной, и менее пластичной.

Способы производства

Такой , как латунь, хорошо поддается различным методам обработки. Так, из этого сплава можно получать различные изделия методами ковки, штамповки и протяжки, а благодаря относительно невысокой температуре плавления и хорошей текучести в расплавленном состоянии его активно используют в литейном производстве.

Латунь, основным легирующим элементом в которой является цинк, получают плавкой:

  • в тиглях, изготовленных из огнеупорного материала (для нагрева тигли вместе с компонентами сплава помещают в шахтные или пламенные печи);
  • в отражательных печах (при использовании данного метода плавку выполняют без применения тиглей).
При выплавке латунного сплава следует учитывать тот факт, что цинк при осуществлении такой процедуры будет активно испаряться, поэтому количество данного металла следует рассчитывать с некоторым запасом.

Сферы применения

В зависимости от количественного содержания основных компонентов латунь может использоваться для изготовления изделий различного назначения.

Одной из наиболее распространенных разновидностей деформируемых латунных сплавов является томпак, в составе которого содержится 88–97% меди и не более 10% цинка. Наиболее значимыми характеристиками сплавов данного типа являются:

  • высокая пластичность;
  • высокая коррозионная устойчивость;
  • хорошие антифрикционные свойства.

Из характеристик, которые способствуют высокой популярности сплавов данного типа, надо отметить:

  • хорошую свариваемость со сталью и другими металлами, что позволяет использовать томпак для изготовления изделий из комбинированных материалов;
  • красивый золотистый цвет – характеристика, которая стала причиной активного использования томпак для производства изделий художественного назначения;
  • возможность покрывать поверхность изделий из томпака эмалью и лаком, золотить, а также использовать другие типы декоративных покрытий.

Специалисты при производстве томпака используют три основные формулы химического состава данного сплава, в котором медь, цинк, свинец и олово могут содержаться в следующих пропорциях:

  • 82/18/1,5/3;
  • 82/18/3/1;
  • 82,3/17,5/0/0,2.

Данные формулы, что примечательно, были выведены еще в XIX веке. Их автором является ученый из Шотландии Эндрю Юр.

Латунь – сплав меди и цинка, известный с самых давних античных времен. Производить его научились еще в Древнем Риме. И хотя цинк как металл в те времена известен еще не был, цинкосодержащую породу в металлургии научились использовать вполне успешно.

Сегодня латунные сплавы разного вида используются в очень многих областях народного хозяйства. Поэтому данная статья будет посвящена изучению свойств, характеристик, марок и цены за 1 кг латуни, ее применение и производство.

Это одна из разновидностей сплавов на основе , известная наряду с бронзами – алюминиевыми, свинцовыми, кремниевыми и так далее.

  • Основным его компонентом выступает медь, вторым всегда является цинк.
  • Кроме того, в состав могут входить разнообразные дополнительные ингредиенты – тот же , .

Данное видео расскажет о том, как заварить латунь:

Понятие и особенности

Сплав – макроскопический однородный материал, в состав которого входят, в основном, металлические компоненты. Его отличие от вещества состоит в наличие свойств, обеспечиваемых микроструктурой и кристаллической структурой фаз. Так, электропроводность и теплопроводность, присущая металлам, всегда является свойством и сплава. Но при этом физические характеристики могут изменяться в зависимости от внешних условий, если главенствующей становится та или иная фаза.

  • Так, например, если речь идет о латуни, увеличение доли цинка влияет на свойства сплава нелинейным образом. в меди растворяется до 39%. До достижения этой величины сплав обладает вполне определенной структурой и отличается высокой пластичностью при относительно малой прочности. При увеличении доли цинка раствориться он уже не может. В результате появляется другая кристаллическая фаза, которая обеспечивает уменьшение пластичности и увеличение прочности.
  • Эта особенность всех сплавов, а не только латунных, требует обращать пристальное внимание на состав. Золотистая латунь с долей меди в 75% пластина, легко деформируется без нагрева и идеально подходит для ювелирного дела. Латунь с содержанием меди в 58% к деформируемым уже не относится, но зато отлично показывает себя при производстве отливок.
  • В целом все медные сплавы разделяют на латуни, и припои. Бронзы – это составы, включающие медь и олово в основном, а также бериллий и алюминий, латуни – медь и цинк. Припои могут иметь сложный состав. Но если от припоя отличить материал не составляет труда, то с бронзой можно перепутать.

По внешнему виду они очень похожи. Особенно при одинаковой доле меди, однако свойства их отличаются.

  • Бронза обладает выраженной крупнозернистой структурой, отличается долговечностью и хорошей стойкостью к коррозии: изделия из бронзы могут эксплуатироваться на улице. Мало чувствительна бронза и к морской воде, что обеспечило ей большую популярность в судостроении. Ковкость бронзы ниже, чем у латуни, к тому же температура деформации выше, но зато и изделия сохраняют свой вид неизменным очень долго.
  • Латунь – материал, куда более пластичный, поддается холодной ковке, температура деформации ниже 300 С.. Однако именно пластичность является причиной высокой изнашиваемости материала, так что латунные изделия могут использоваться только в качестве внутреннего декора. Стойкость к коррозии в целом ниже, однако специальные сплавы – морская латунь, например, могут соперничать с бронзой в стойкости к действию солей и кислот.

Латунь чаще используют в ювелирном деле. А вот для декоративных деталей крупных – кованые украшение на лестнице, предметы интерьера, лучше использовать бронзу.

Хромированная латунь (фото)

Плюсы и минусы

Любой металл обладает определенными характеристиками, которые в разных ситуациях могут выступать достоинствами, а могут превратиться в недостатки. В строительных работах латунь применяется не так уж часто, что свидетельствует, скорее, о популярности других материалов, а не недостатках сплава.

  • К главным достоинствам латуней любого рода относят малый вес. Именно это и делает материал незаменимым в самолето- и ракетостроении. В быту это преимущество оказывается востребованным в тех случаях, когда требуется минимальный вес системы водоснабжения, например.
  • К наиболее востребованным качествам материала относятся его декоративные свойства. Латунь обладает очень красивой и разнообразной цветовой гаммой. Фурнитура и аксессуары, декор и предметы обихода, выполненные из латуни, неизменно привлекательны и подчеркивают элегантность и сдержанную роскошь интерьера. Причем сплав одинаково хорошо смотрится в любой модификации: и в виде блестящего изделия в стиле барокко, и с благородной патиной.
  • Показатели теплопроводности латуни ниже, чем у меди или бронзы. Эту особенность используют для получения предметов и систем, где важно сохранение тепла: при изготовлении роскошных латунных ванн или даже мебели, поскольку трубы и вставки из латуни не будут столь неприятно холодными на ощупь как, например, стальные.
  • С другой стороны, это качество уменьшает популярность отопительных труб, поскольку медные отдают тепло воздуху быстрее.
  • Латунь относится к диамагнетикам, то есть, выталкивается из магнитного поля. Сплав издавна применялся для изготовления оправы для компасов. Сегодня это свойство используют в приборостроении.
  • Коррозионная стойкость латуни даже выше чем у меди, однако падает с увеличением температуры. Поэтому системы водоснабжения из латунных труб выгоднее, чем из медных – стоимость ниже, а вот для отопления все же лучше медный трубопровод.
  • Стоимость – тоже весьма немаловажный фактор. И ювелирные, и автоматические латуни стоят меньше, чем медь, поскольку цинк является металлом, куда более доступным и снижает цену сплава.
  • Прочность латуни по сравнению с бронзой ниже, хотя ударная вязкость выше. Поэтому те же перила и ограждения лучше изготавливать из бронзы. С другой стороны, латунные сплавы, легированные железом, марганцем, кремнием обладают достаточной прочностью, чтобы быть сырьем для машинных деталей самого разного вида.

Структура и состав

Как и в других сплавах свойства материала определяются составом и фазовым состоянием. Причем различия настолько велики, что делают латуни разной марки невзаимозаменяемыми.

Различают 2 вида сплавов: двухкомпонентные и многокомпонентные.

  • Двухкомпонентные , то есть, состоящие из 2 металлов. При этом могут наличествовать примеси, но в таком объеме, который на качества не влияет. Главным является медь, поэтому в маркировке, например, указывают лишь долю меди, а долю цинка просто рассчитывают. Свойства такого сплава во многом определяются фазовым составом.
    • Так, латунь с содержанием цинка до 39% включает только одну фазу – α -фазу. Такой сплав отличается высокой пластичностью, однако прочность его относительно невелика.
    • При повышении доли цинка металл не может полностью раствориться в меди, и в итоге появляется β-фаза. Пластичность при этом уменьшается, а прочность резко возрастает до содержания цинка в 45%, а затем снова падает.
  • Многокомпонентные латуни наряду с медью и цинком включают и другие металлы и неметаллы. На свойства сплава они оказывают весьма заметное влияние. Определяются они характером компонента. Так, добавление олова значительно увеличивает стойкость к действию морской воды. А добавка никеля, например, увеличивает механическую прочность изделия из такой латуни.

Другая классификация связана с методами обработки сплава.

  • Деформируемые , то есть, латуни, которые можно подвергать деформации в холодном состоянии. Выпускают такие сплавы латуни в виде листов, прутков, проволоки, из которых затем изготавливают, например, всевозможные трубы.
  • Литейные – сплавы лиатуни, которые деформируют лишь под воздействием высокой температуры и давления при литье. Из такого материала детали отливают и получают подшипники, машинные детали, арматуру и прочее.

Используется классификация по доле цинка.

  • Красная или томпак – доля цинка составляет 5–20%. Сплав отличается превосходными антифрикционными и антикоррозийными свойствами и используется для получения биметалла сталь-латунь.
  • Желтая – с долей цинка от 20 до 36%. Состав сохраняет высокую пластичность.
  • Техническая – с 48–50% цинка, применяется для получения фитингов, машинных деталей, частей химической аппаратуры и так далее.

О свойствах латуни по ГОСТу погорим ниже.

Свойства и характеристики

Свойства латуни определяют составом как химическим, так и фазовым. Поэтому говорить об общих технических свойствах довольно затруднительно. Каждый сплав обладает своими особенностями.

Усредненные данные выглядят так:

  • средняя плотность – 8300–8700 кг/куб. м;
  • удельная теплоемкость при нормальной температуре — 0,377 кДж·кг −1 ·K −1
    удельное сопротивление – (0,07-0,08)·10 −6 Ом·м;
  • теплопроводность – 0,26–0,592 кал/см · сек, · °С, чем выше доля меди, тем выше теплопроводность;
  • температура плавления определяется химическим составом и варьируется от 880–950 С. Увеличение доли цинка температуру уменьшает;
  • материал можно сваривать, но только не сваркой плавлением, а, например, контактной сваркой.
  • Сплавы любого состава хорошо полируются.

Введение легирующих добавок существенно влияет на физические характеристики. Приведенные данные касаются именно двухкомпонентных латуней.

Про изготовление деталей из латуни и меди массово и на заказ, а также изготовление других изделий из нее погорим ниже.

Плавка латуни в индукционной печи без графитового тигля представлена в видео ниже:

Производство материала

Получение латуни отличается энергоемкостью и относится к довольно сложным технологическим процессам. Дело в том, что температуры плавления составляющих латуни заметно отличаются, поэтому плавка проходит поэтапно. То же самое касается и легирующих добавок: компоненты нужно добавлять в точной последовательности, причем многие из них требуют использования покровного флюса, поскольку взаимодействуют с кислородом.

Зависит от типа сплава. Литейные в виде слитков отправляются на отливку деталей. Деформируемые сплавы попадают в прокатный цех, где подвергаются механической обработке, отжигу и протравливанию в зависимости от формы выпуска.

В целом схема получения выглядит так:

  • подготовка сырья – используются несколько методов для извлечения меди и цинка из руды;
  • плавка – в зависимости от состава сплава загрузка компонентов производится в определенной последовательности. В первую очередь расплавляют медь;
  • разливка в формы – получение слитков;
  • деформирование слитков в прокатном цеху – не менее трех этапов;
  • отжиг и протравливание – если получают листы, например;
  • последний этап прокатки.

Изготовление латунных сплавов возможно лишь на достаточно крупных предприятиях цветной металлургии.

Про пайку изделий,художественное литье из латуни погорим ниже.

Цвет латуни (фото)

Области применения

Свойства материалов определяют и . Состав каждого сплава указывается подробно с тем, чтобы не допустить ошибок при использовании.

  • Латунь издревле применялась в ювелирном деле: желтая латунь по внешнему виду ничем не отличается от золота 583 пробы. И, кстати, именно она использовалась в качестве тренировочного материала для золотых дел мастеров, так как и физические ее характеристики во многом близки к золоту. Сегодня сплав используют для изготовления украшений, которые хоть и относятся к бижутерии, однако весьма популярны благодаря красоте и изяществу.
  • Материал применяется в производстве мебели. Он легко поддается ковке, что позволяет значительно украсить мебель. Благодаря этому же свойству из него производят множество предметов декора – статуэтки, посуду, подставки, бра.
  • Кроме того, томпак, то есть, состав с высоким содержанием меди, применяется для получения деталей теплотехнической и химической аппаратуры: змеевиков, капиллярных трубок, сильфонов и прочего.
  • Из литьевой латуни получают множество фасонных деталей, включая разнообразные фитинги.
  • Автоматная – материал для изготовления часовых деталей, машинных, а также различного вида крепежа.
  • Морская применяется в судостроении для производства корпусов приборов, профилей, труб.
  • Деформируемые сплавы используют при изготовлении дверной фурнитуры, водопроводных труб, смесителей, кранов и прочего.

Латуни разного состава применяются во многих отраслях. В основном их использование связано с хорошей коррозийной стойкостью материала, малым весом и, конечно, редкой эстетической привлекательностью сплава.

О том, как начистить медь и латунь до блеска, поведает данный видеоролик:

Латуни обозначаются буквой «Л», а бронзы «Бр», затем идут буквы, означающие легирующие элементы: О – олово, Ц – цинк, Мц – марганец, Ж – железо, Ф – фосфор, Б – бериллий, Х – хром, С – свинец, А – алюминий, Н – никель, Су – сурьма и т.д. И бронзы, и латуни подразделяются на деформируемые и литейные, что отражается в маркировке.

В простых (нелегированных) деформируемых латунях число, следующее за буквой «Л», означает % Cu. Например, Л80 – 80% Сu, Zn – остальное (20%). Если деформируемая латунь многокомпонентна, за буквой «Л» подряд идут обозначения всех легирующих элементов. Например, ЛАН59-3-2 (А – алюминий, Н – никель). Первая цифра в марке – процент меди, последующие – процент легирующего элемента в том же порядке, что и буквы, цинк – остальное. Таким образом, ЛАН59-3-2 расшифровывается так: деформируемая латунь с 59% Cu, 3% Al, 2% Ni, Zn – остальное. Деформируемые бронзы маркируются также, только количество меди не указывается, например, БрОЦС8-4-3 расшифровывается так: деформируемая оловянная бронза, содержащая 8% Sn, 4% Zn, 3% Pb, остальное Cu.

Маркировка литейных латуней и бронз идентична: после каждой буквы, означающей легирующий элемент, идет цифра – процентное содержание этого легирующего элемента. Например, ЛЦ35Н2ЖА литейная латунь, Zn 35%, Ni 2%, Fe до 1%, Al – до 1%, Cu – ост. БрА9Мц2 – литейная алюминиевая бронза, содержащая Al 9%? Mn 2%, Cu – ост. БрА9Мц2 – литейная алюминиевая бронза, содержащая Al 9%, Mn 2%, Cu – ост.

Латуни.

На рис. 12.1 представлена диаграмма Cu-Zn, где видно, что в меди растворяется до 39% Zn. На рис. 12.2 показано, как изменяются свойства в зависимости от содержания цинка в латуни. Видно, что при растворении Zn увеличивается не только прочность, но и пластичность латуней (максимум проходит при 30% Zn), таким образом, однофазные -латуни более пластичны, чем чистая медь. Такие латуни (Л96, Л90 – томпак, Л80 – полутомпак, Л68 – патронная (гильзовая) и др.) – подвергаются обработке давлением. Из них изготавливаются листы, трубы, проволока, сильфоны, музыкальные инструменты, трубы для теплообменников и др.

Рис. 12.1 Диаграмма Cu-Zn

Рис. 12.2 Влияние Zn на механические свойства латуней.

При содержании Zn больше 39% в латунях появляется хрупкая " -фаза, при этом прочность латуней становится наибольшей, а пластичность снижается. При переходе в однофазную " -область и прочность, и пластичность резко падают, поэтому латуни не изготавливают с содержанием Zn более 45% (см. рис. 12.2). Двухфазные латуни обрабатываются давлением при температурах выше 700 0 , когда " -фаза разупорядочивается и становится достаточно пластичной.

Двухфазные латуни часто легируют, при этом прочность повышается, а пластичность падает.

Свинец улучшает обрабатываемость резанием (латуни ЛС60-1 и ЛС59-1 – автоматные), олово, никель, алюминий и марганец увеличивают антикоррозионную стойкость. Например, ЛО70-1, ЛО62-1 называются «морские» латуни, ЛН65-5 для конденсаторных трубок.

Из латуней детали можно изготавливать не только давлением, но и литьем: они обладают хорошей жидкотекучестью, мало склонны к ликвации, что объясняется небольшим температурным интервалом кристаллизации (линии ликвидус и солидус очень близки (см. рис. 12.1). Обычно литейные латуни многокомпонентные, причем добавки улучшают литейные свойства, а также прочность и придают специальные свойства (антикоррозионные, антифрикционные, жаропрочные и т.д.). Например, из латуни ЛЦ30А3 изготавливают детали для судостроения и машиностроения, из латуни ЛЦ25С2 – штуцера гидросистем автомобилей, из ЛЦ23А6ЖЗМц – ответственные детали и антифрикционные детали.

Бронзы.

Оловянные бронзы являются старейшими металлическими сплавами (бронзовый век). Сейчас оловянные бронзы применяются все реже из-за дефицитности олова.

Бронзы, содержащие до 4-5% Sn, обычно однофазные, а при большем содержании Sn- двухфазные и имеют структуру +эвтектоид ( +Cu 31 Sn 8). Химическое соединение Cu 31 Sn 8 ( -фаза) очень хрупкое. В практике применяют только бронзы с содержанием Sn до 10-12%, т.к. при большем содержании сплавы становятся очень хрупкими.

Бронзы легируют: Zn – для удешевления, Р – улучшает литейные свойства, Ni - повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию, свинец – повышает плотность отливок, улучшает обрабатываемость резанием и придает антикоррозионные и антифрикционные свойства.

Деформируемые бронзы обычно однофазные, из них изготавливают прутки, ленты, проволоку, пружины или другие элементы. Например, из БрОЦ4-3 делают плоские и круглые пружины, БрОФ7- 0,2 – прутки с высокой коррозионной стойкостью и износостойкостью, а также с хорошими пружинными свойствами.

Оловянные бронзы имеют рассеянную усадочную раковину, в то же время внешние очертания очень точно копируют форму, поэтому их применяют для деталей очень сложной конфигурации, а также художественного литья.

а) - диаграмма Cu-Al

б) - влияние концентрации

алюминия на механические

свойства алюминиевых бронз

а) – диаграмма Cu-Be

б) – влияние концентрации

бериллия на механические

свойства бериллиевых бронз

Двухфазные бронзы имеют очень высокие антифрикционные свойства, поэтому из них делают вкладыши подшипников, червячные пары и т.д. Например, из бронзы БрО10С10 отливают подшипники скольжения, БрО5Ц5С5 – арматура, вкладыши подшипников.

Алюминиевые бронзы.В связи с тем, что Al не является дефицитным металлом, алюминиевые бронзы применяются наиболее широко. Al в меди растворяется до 9% (см. рис. 12.3), при содержании более 9% Al в сплаве появляется эвтектоид ( "), где " – химическое соединение Cu 32 Al 9 . Однофазная алюминиевая бронза БрА5 пластична, используется для изготовления монет, медалей и обладает высокой коррозионной стойкостью.

Двухфазные алюминиевые бронзы имеют пониженную пластичность, но высокую прочность, которую можно увеличить термической обработкой. При нагреве эвтектоид превращается в -фазу, которая при охлаждении с критической скоростью превращается в мартенсит (игольчатую структуру, подобную закаленной стали). Кроме того, при определенных скоростях охлаждения можно получить измельченную эвтектоидную смесь (подобно трооститу и сорбиту в стали).

При содержании более 11% Al прочность снижается (рис. 12.3, б) из-за хрупкости, поэтому более 11% Al не добавляют. Двухфазные бронзы обычно легируют: железо измельчает зерно и повышает механические и антифрикционные свойства: никель улучшает механические свойства и износостойкость как при низких, так и высоких температурах. Бронзы БрАЖН10-4-4 и БрАЖН11-6-6 являются наиболее прочными из всех алюминиевых бронз, при этом они обладают хорошими антифрикционными свойствами, химической стойкостью, поэтому из них изготавливают детали химической и пищевой промышленности, трущиеся детали.

Литейные свойства алюминиевых бронз ниже, чем у оловянных, но они обеспечивают высокую плотность отливок и более прочные.

Бериллиевые бронзы(БрБ2, БрБНТ1, 9 и др.) содержат до 2% бериллия. Предельная растворимость бериллия (см. рис. 12.4) в меди составляет 2,7%, а при 300 0 С – 0,2%. При нагреве бронзы до температуры закалки 760-780 0 С образуется однофазный -раствор, а при охлаждении в воде получается пересыщенный раствор бериллия в меди. При старении 300-350 0 С в течение 3ч. из пересыщенного -раствора выделяются дисперсные частицы -фазы (Cu Be), что сильно повышает прочность (рис. 12.4, б) и твердость ( =1250 МПа, =3-5%, НВ375). Бериллий дорогой и редкий металл, однако комплекс свойств этих бронз настолько высокий, что их производство экономически оправдано.

Бериллиевые бронзы используют в приборостроении для изготовления ответственных пружин, мембран и других пружинящих деталей. Она обладает химической стойкостью, хорошей свариваемостью и обрабатываемостью режущим инструментом.

Бериллиевая бронза является искробезопасной, поэтому из нее делают электрические контакты и ударный инструмент для работы во взрывоопасных атмосферах.

Свинцовистые бронзы (БрС30, БрС60Н2, 5 и др.) применяются для изготовления вкладышей подшипников скольжения. Свинец практически не растворяется в жидкой меди, поэтому не образуется эвтектики, и интервал кристаллизации составляет более 600 0 , что приводит к ликвации. Для ее предотвращения сплав надо ускоренно охлаждать или легировать. После затвердевания сплав состоит из кристаллов меди и включений свинца. По сравнению с оловянистыми бронзами теплопроводность Бр30 в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении.

Из-за невысоких механических свойств ( =60МПа, =4%) свинцовистую бронзу наплавляют тонким слоем на стальные трубы (ленты).

Такие биметаллические подшипники просты в изготовлении, легко заменяются при изнашивании и более дешевые. Для упрочнения кристаллитов меди БрС30 легируют Sn и Ni.

Кроме оловянных, свинцовых, алюминиевых и бериллиевых бронз применяются кремниевые, марганцевые, сурмянистые, кадмиевые и др. бронзы.

Загрузка...